Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Biomed Sci ; 31(1): 40, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637839

RESUMO

Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.


Assuntos
Anti-Infecciosos , Sepse , Humanos , Sistemas de Liberação de Medicamentos , Peptídeos/uso terapêutico , Nanotecnologia , Sepse/diagnóstico , Sepse/tratamento farmacológico
2.
Int J Biol Macromol ; 262(Pt 1): 130046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336334

RESUMO

Bacterial sepsis is a mortal syndromic disease characterized by a complex pathophysiology that hinders effective targeted therapy. This study aimed to develop multifunctional, biomimetic and pH-responsive ciprofloxacin-loaded chitosan (CS)/sodium deoxycholic acid (SDC) nanoplexes (CS/SDC) nanoplexes with the ability to target and modulate the TLR4 pathway, activated during sepsis. The formulated nanoplexes were characterized in terms of physicochemical properties, in silico and in vitro potential biological activities. The optimal formulation showed good biocompatibility and stability with appropriate physicochemical parameters. The surface charge changed from negative at pH 7.4 to positive at pH 6.0 accompanied with a significantly faster release of CIP at pH 6.0 compared to 7.4. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, the system revealed 4- and 2-fold antibacterial enhancement at acidic pH, and 3- and 4-fold better antibiofilm efficacy against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) respectively, compared to bare CIP. In addition, enhanced bacterial efflux pump inhibition was demonstrated by CS/SDC nanoplexes. Finally, the developed nanosystem showed excellent antioxidant activity against DPPH radicals. Taken together, the study confirmed the multi-functionalities of CS/SDC nanoplexes and their potential benefits in improving bacterial sepsis therapy.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Quitosana/química , Biomimética , Receptor 4 Toll-Like , Antibacterianos/química , Concentração de Íons de Hidrogênio
3.
Int J Pharm ; 644: 123346, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37633537

RESUMO

Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.


Assuntos
Sistemas de Liberação de Medicamentos , Sepse , Humanos , Sepse/tratamento farmacológico , Suplementos Nutricionais , Liberação Controlada de Fármacos , Inflamação/tratamento farmacológico
4.
Int J Pharm ; 640: 122967, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37084831

RESUMO

In this work, a potent hyaluronidase inhibitor (ascorbyl stearate (AS)) was successfully employed to design vancomycin-loaded solid lipid nanoparticles (VCM-AS-SLNs) with biomimetic and enzyme-responsive features, to enhance the antibacterial efficacy of vancomycin against bacterial-induced sepsis. The VCM-AS-SLNs prepared were biocompatible and had appropriate physicochemical parameters. The VCM-AS-SLNs showed an excellent binding affinity to the bacterial lipase. The in vitro drug release study showed that the release of the loaded vancomycin was significantly accelerated by the bacterial lipase. The in silico simulations and MST studies confirmed the strong binding affinity of AS and VCM-AS-SLNs to bacterial hyaluronidase compared to its natural substrate. This binding superiority indicates that AS and VCM-AS-SLNs could competitively inhibit the effect of hyaluronidase enzyme, and thus block its virulence action. This hypothesis was further confirmed using the hyaluronidase inhibition assay. The in vitro antibacterial studies against sensitive and resistant Staphylococcus aureus revealed that the VCM-AS-SLNs had a 2-fold lower minimum inhibitory concentration, and a 5-fold MRSA biofilm elimination compared to the free vancomycin. Furthermore, the bactericidal-kinetic showed a 100% bacterial clearance rate within 12 h of treatment with VCM-AS-SLNs, and <50 % eradication after 24 h for the bare VCM. Therefore, the VCM-AS-SLN shows potential as an innovative multi-functional nanosystem for effective and targeted delivery of antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Vancomicina/farmacologia , Hialuronoglucosaminidase/farmacologia , Biomimética , Lipase
5.
J Control Release ; 352: 1048-1070, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372385

RESUMO

Sepsis, a consequence of an imbalanced immune response to infection, is currently one of the leading causes of death globally. Despite advances in the discoveries of potential targets and nanotechnology, sepsis still lacks effective drug delivery systems for optimal treatment. Stimuli-responsive and biomimetic nano delivery systems, specifically, are emerging as advanced bio-inspired nanocarriers for enhancing the treatment of sepsis. Herein, we present a critical review of different stimuli-responsive systems, including pH-; enzyme-; ROS- and toxin-responsive nanocarriers, reported in the delivery of therapeutics for sepsis. Biomimetic nanocarriers, utilizing natural pathways in the inflammatory cascade to optimize sepsis therapy, are also reviewed, in addition to smart, multifunctional vehicles. The review highlights the nanomaterials designed for constructing these systems; their physicochemical properties; the mechanisms of drug release; and their potential for enhancing the therapeutic efficacy of their cargo. Current challenges are identified and future avenues for research into the optimization of bio-inspired nano delivery systems for sepsis are also proposed. This review confirms the potential of stimuli-responsive and biomimetic nanocarriers for enhanced therapy against sepsis and related complications.


Assuntos
Nanopartículas , Sepse , Humanos , Sistemas de Liberação de Medicamentos , Biomimética , Liberação Controlada de Fármacos , Nanotecnologia , Sepse/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química
6.
J Control Release ; 351: 598-622, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183972

RESUMO

Hybrid nanoparticles (NPs) are emerging as superior alternatives to conventional nanocarriers for enhancing the delivery of antibiotics and improving their targeting at the infection site, resulting in the eradication of bacterial infections and overcoming antimicrobial resistance. They can specifically control the release of antibiotics when reaching the targeted site of infection, thus enhancing and prolonging their antimicrobial efficacy. In this review, we provide a comprehensive and an up-to-date overview of the recent advances and contributions of lipid-polymer hybrid NPs; organic-inorganic hybrid NPs; metal-organic frameworks; cell membrane-coated hybrid NPs; hybrid NP-hydrogels; and various others, that have been reported in the literature for antibacterial delivery, with emphasis on their design approaches; the nanomaterials constructed; the mechanisms of drug release; and the enhanced antibacterial efficacy of the reported hybrid nanocarriers. This review also highlights future strategies that can be used to improve the potential of hybrid nanosystems to treat bacterial infections and overcome antibiotic resistance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Nanopartículas , Humanos , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico , Liberação Controlada de Fármacos , Polímeros/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
7.
Int J Biol Macromol ; 222(Pt A): 546-561, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150574

RESUMO

The incidence and of bacterial infections, and resulting mortality, among cancer patients is growing dramatically, worldwide. Several therapeutics have been reported to have dual anticancer and antibacterial activity. However, there is still an urgent need to develop new drug delivery strategies to improve their clinical efficacy. Therefore, this study aimed to develop a novel acid cleavable prodrug (HA-Cip) from ciprofloxacin and hyaluronic acid to simultaneously enhance the anticancer and antibacterial properties of Cip as a superior drug delivery system. HA-Cip was synthesised and characterised (FT-IR, HR-MS, and H1 NMR). HA-Cip generated stable micelles with an average particle size, poly dispersion index (PDI) and zeta potential (ZP) of 237.89 ± 25.74 nm, 0.265 ± 0.013, and -17.82 ± 1.53 mV, respectively. HA-Cip showed ≥80 % cell viability against human embryonic kidney 293 cells (non-cancerous cells), ˂0.3 % haemolysis; and a faster pH-responsive ciprofloxacin release at pH 6.0. HA-Cip showed a 5.4-fold improvement in ciprofloxacin in vitro anticancer activity against hepatocellular cancer (HepG2) cells; and enhanced in vitro antibacterial activity against Escherichia coli and Klebsiella pneumoniae at pH 6.0. Our findings show HA-Cip as a promising prodrug for targeted delivery of ciprofloxacin to efficiently treat bacterial infections associated, and/or co-existing, with cancer.


Assuntos
Infecções Bacterianas , Neoplasias , Pró-Fármacos , Humanos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Hialurônico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias/tratamento farmacológico , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos
8.
Chem Phys Lipids ; 249: 105241, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152880

RESUMO

The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Vancomicina/química , Nanopartículas/química , Polímeros , Lipídeos/química , Concentração de Íons de Hidrogênio
9.
J Control Release ; 349: 338-353, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35820538

RESUMO

Ciprofloxacin (CIP) a broad-spectrum antibiotic, is used extensively for the treatment of diverse infections and diseases of bacteria origin, and this includes infections caused by E. coli; P. aeruginosa; S. aureus; and MRSA. This extensive use of CIP has therefore led to an increase in resistance by these infection causing organisms. Nano delivery systems has recently proven to be a possible solution to resistance to these organisms. They have been applied as a strategy to improve the target specificity of CIP against infections and diseases caused by these organisms, thereby maximising the efficacy of CIP to overcome the resistance. Herein, we proffer a brief overview of the mechanisms of resistance; the causes of resistance; and the various approaches employed to overcome this resistance. The review then proceeds to critically evaluate various nano delivery systems including inorganic based nanoparticles; lipid-based nanoparticles; capsules, dendrimers, hydrogels, micelles, and polymeric nanoparticles; and others; that have been applied for the delivery of CIP against E. coli; P. aeruginosa; S. aureus; and MRSA infections. Finally, the review highlights future areas of research, for the optimisation of various nano delivery systems, to maximise the therapeutic efficacy of CIP against these organisms. This review confirms the potential of nano delivery systems, for addressing the challenges of resistance to caused by E. coli; P. aeruginosa; S. aureus; and MRSA to CIP.


Assuntos
Dendrímeros , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Escherichia coli , Hidrogéis , Lipídeos , Micelas , Testes de Sensibilidade Microbiana , Sistemas de Liberação de Fármacos por Nanopartículas , Pseudomonas aeruginosa , Staphylococcus aureus
10.
Artigo em Inglês | MEDLINE | ID: mdl-35485247

RESUMO

Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA-based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA. These nanoparticles are able to selectively deliver antibacterial drugs or diagnostic molecules into the site of infections. In addition, HA can bind with overexpressed cluster of differentiation 44 (CD44) receptors in macrophages and also can be degraded by a family of enzymes called hyaluronidase (HAase) to release drugs or molecules. By binding with these receptors or being degraded at the infection site by HAase, HA-based nanoparticles allow enhanced and targeted antibacterial delivery. Herein, we present a comprehensive and up-to-date review that highlights various techniques of preparation of HA-based nanoparticles that have been reported in the literature. Furthermore, we also discuss and critically analyze numerous types of HA-based nanoparticles that have been employed in antibacterial delivery to date. This article offers a critical overview of the potential of HA-based nanoparticles to overcome the challenges of conventional antibiotics in the treatment of bacterial infections. Moreover, this review identifies further avenues of research for developing multifunctional and biomimetic HA-based nanoparticles for the treatment, prevention, and/or detection of pathogenic bacteria. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Infecções Bacterianas , Nanopartículas , Antibacterianos/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ácido Hialurônico/química , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapêutico
11.
Int J Biol Macromol ; 206: 381-397, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202637

RESUMO

Biofilms are a global health concern because they are associated with chronic and recurrent infections as well as resistance to conventional antibiotics. The aim of this study was to prepare a nanogel for the co-delivery of NO and AMPs against bacteria and biofilms. The NO-releasing nanogel was prepared by crosslinking HA solution with divinyl sulfone and extensively characterized. The nanogel was found to be biocompatible, injectable and NO release from the gel was sustained over a period of 24 h. In vitro antibacterial studies showed that the NO-AMP-loaded nanogel exhibited a broad spectrum antibacterial/antibiofilm activity. The NO-releasing nanogel had a greater antibacterial effect when compared to NO alone with MIC values of 1.56, 0.78 and 0.39 µg/ml against Escherichia coli, Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa bacteria respectively. The antibiofilm results showed there was a 12.5 and 24-folds reduction in biofilms of MRSA, and P. aeruginosa respectively for catheters exposed to nanogel loaded with AMP/NO when compared to only NO, while a 7 and 9.4-folds reduction in biofilms of MRSA, and P. aeruginosa respectively was displayed by the nanogel loaded with only NO compared to only NO. The AMP/NO-releasing nanogel showed the potential to combat both biofilms and bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Biofilmes , Escherichia coli , Ácido Hialurônico , Testes de Sensibilidade Microbiana , Nanogéis , Óxido Nítrico , Polietilenoglicóis , Polietilenoimina , Pseudomonas aeruginosa
12.
Artigo em Inglês | MEDLINE | ID: mdl-34643067

RESUMO

Rampant antimicrobial resistance calls for innovative strategies to effectively control bacterial infections, enhance antibacterial efficacy, minimize side effects, and protect existing antibiotics in the market. Therefore, to enhance the delivery of antibiotics and increase their bioavailability and accumulation at the site of infection, the surfaces of nano-drug delivery systems have been diversely modified. This strategy applies various covalent and non-covalent techniques to introduce specific coating materials that have been found to be effective against various sensitive and resistant microorganisms. In this review, we discuss the techniques of surface modification of nanocarriers loaded with antibacterial agents. Furthermore, saccharides, polymers, peptides, antibiotics, enzymes and cell membranes coatings that have been used for surface functionalization of nano-drug delivery systems are described, emphasizing current approaches for enhancing delivery, bioavailability, and efficacy of surface-modified antibacterial nanocarriers at infection sites. This article offers a critical overview of the potential of surface-modified antibacterial nanocarriers to overcome the limitations of conventional antibiotics in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Antibacterianos , Infecções Bacterianas , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Sistemas de Liberação de Fármacos por Nanopartículas , Nanotecnologia
13.
Int J Pharm ; 609: 121191, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670120

RESUMO

Novel and effective anti-hypertensive agents are required to manage hypertension; therefore, we synthesised a novel antihypertensive drug from captopril and quercetin (cap-que) and explored its antihypertensive potential in a niosomal formulation via molecular hybridisation. The cap-que hybrid was synthesised, and its structure was characterised via NMR, FTIR, and HRMS. Niosomes were then loaded with cap-que using the thin-film hydration method. The particle size, polydispersity index, surface charge and drug entrapment efficiency (EE%) of the formulation were 418.8 ± 4.21 nm, 0.393 ± 0.063, 16.25 ± 0.21 mV, and 87.74 ± 2.82%, respectively. The drug release profile showed a sustained release of the active compound (43 ± 0.09%) from the niosomal formulation, compared to the parent drug (80.7 ± 4.68%), over 24 h. The cell viability study confirmed the biosafety of the formulation. The in vivo study in a rat model showed enhanced antihypertensive activity of the hybrid molecule and niosomal formulation which reduced systolic and diastolic pressure when compared to the individual, bare drugs. The findings of this study concluded that the antihypertensive potential of captopril can be enhanced by its hybridisation with quercetin, followed by niosomal nano drug delivery.


Assuntos
Hipertensão , Pró-Fármacos , Animais , Captopril , Sistemas de Liberação de Medicamentos , Hipertensão/tratamento farmacológico , Lipossomos , Tamanho da Partícula , Quercetina , Ratos
14.
ACS Omega ; 6(34): 21994-22010, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497894

RESUMO

Chronic wound infections caused by antibiotic-resistant bacteria have become a global health concern. This is attributed to the biofilm-forming ability of bacteria on wound surfaces, thus enabling their persistent growth. In most cases, it leads to morbidity and in severe cases mortality. Current conventional approaches used in the treatment of biofilm wounds are proving to be ineffective due to limitations such as the inability to penetrate the biofilm matrix; hence, biofilm-related wounds remain a challenge. Therefore, there is a need for more efficient alternate therapeutic interventions. Hydrogen peroxide (HP) is a known antibacterial/antibiofilm agent; however, prolonged delivery has been challenging due to its short half-life. In this study, we developed a hydrogel for the codelivery of HP and antimicrobial peptides (Ps) against bacteria, biofilms, and wound infection associated with biofilms. The hydrogel was prepared via the Michael addition technique, and the physiochemical properties were characterized. The safety, in vitro, and in vivo antibacterial/antibiofilm activity of the hydrogel was also investigated. Results showed that the hydrogel is biosafe. A greater antibacterial effect was observed with HP-loaded hydrogels (CS-HP; hydrogel loaded with HP and CS-HP-P; hydrogel loaded with HP and peptide) when compared to HP as seen in an approximately twofold and threefold decrease in minimum inhibitory concentration values against methicillin-resistant Staphylococcus aureus (MRSA) bacteria, respectively. Similarly, both the HP-releasing hydrogels showed enhanced antibiofilm activity in the in vivo study in mice models as seen in greater wound closure and enhanced wound healing in histomorphological analysis. Interestingly, the results revealed a synergistic antibacterial/antibiofilm effect between HP and P in both in vitro and in vivo studies. The successfully prepared HP-releasing hydrogels showed the potential to combat bacterial biofilm-related infections and enhance wound healing in mice models. These results suggest that the HP-releasing hydrogels may be a superior platform for eliminating bacterial biofilms without using antibiotics in the treatment of chronic MRSA wound infections, thus improving the quality of human health.

15.
Biomedicines ; 9(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440267

RESUMO

Antimicrobial resistance is one of the most significant threats to health and economy around the globe and has been compounded by the emergence of COVID-19, raising important consequences for antimicrobial resistance development. Contrary to conventional targeting approaches, the use of biomimetic application via nanoparticles for enhanced cellular targeting, cell penetration and localized antibiotic delivery has been highlighted as a superior approach to identify novel targeting ligands for combatting antimicrobial resistance. Gram-positive bacterial cell walls contain lipoteichoic acid (LTA), which binds specifically to Toll-like receptor 2 (TLR2) on human macrophages. This phenomenon has the potential to be exploited for the design of biomimetic peptides for antibacterial application. In this study, we have derived peptides from sequences present in human TLR2 that bind to LTA with high affinity. In silico approaches including molecular modelling, molecular docking, molecular dynamics, and thermodynamics have enabled the identification of these crucial binding amino acids, the design of four novel biomimetic TLR2-derived peptides and their LTA binding potential. The outcomes of this study have revealed that one of these novel peptides binds to LTA more strongly and stably than the other three peptides and has the potential to enhance LTA targeting and bacterial cell penetration.

16.
Int J Pharm ; 607: 120960, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34333022

RESUMO

In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H1 NMR and C13 NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔGbind) and bacterial efflux pumps blocking potential (NorA ΔGbind: -37.10 kcal/mol, NorB ΔGbind: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Antibacterianos , Biomimética , Concentração de Íons de Hidrogênio , Lipase , Lipídeos , Camundongos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Vancomicina , Vitaminas
17.
Int J Pharm ; 607: 120990, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34389419

RESUMO

Transdermal drug delivery is an attractive route of administration relative to other routes as it offers enhanced therapeutic efficacy. However, due to poor skin permeability of certain drugs, their application in transdermal delivery is limited. The ultra-deformable nature of transferosomes makes them suitable vehicles for transdermal delivery of drugs that have high molecular weights and hydrophilicity. However, their low viscosity, which leads to low contact time on the surface of the skin, has restricted their application in transdermal delivery. Therefore, this study aimed to deliver transferosomes loaded with a highly water-soluble and high molecular weight vancomycin hydrochloride (VCM-HCl) via a bigel for systemic delivery and treatment of microbial infections. VCM-HCl-loaded transferosomal formulations (TNFs) were prepared using a reverse-phase evaporation method and then loaded into a bigel. Both the TNFs and TNFs-loaded bigel (TNF-L-B) were characterized by a range of in vitro and ex vivo techniques. TNFs and TNF-L-B were tested for biosafety via the MTT assay and found to be biosafe. Prepared TNFs had sizes, zeta potential and entrapment efficiency of 63.02 ± 5.34 nm, -20.93 ± 6.13 mV and 84.48 ± 1.22% respectively. VCM-HCl release from TNF-L-B showed a prolonged release profile with 39.76 ± 1.6% after 24hrs when compared to bare VCM-HCl loaded in the bigel (74.81 ± 8.84%). Ex-vivo permeation of prepared TNF-L-B showed a higher permeation flux of 0.56 µg/cm2/h compared to the bare VCM-HCl-loaded bigel of 0.23 µg/cm2/h, indicating superior permeation and bioavailability of the drug. Additionally, the prepared TNF-L-B demonstrated improved antimicrobial activity. The TNF-L-B showed minimum inhibitory concentrations (MIC) of 0.97 µg/ml against Staphylococcus aureus (SA) and 1.95 µg/ml against methicillin-resistant SA (MRSA), which were 2-fold lower MIC values than the bare drug. The time-kill assay showed that both TNFs and TNF-L-B systems caused a 5.6-log reduction (100%) in MRSA compared to bare VCM-HCl after 24 hrs of incubation. Furthermore, as opposed to the bare VCM-HCl solution, the degree of biofilm reduction caused by TNFs (55.72%) and TNF-L-B (34.58%) suggests their dominance in eradicating MRSA biofilm. These findings indicate that TNF-L-B is a promising system for transdermal delivery of hydrophilic and high molecular weight drugs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Humanos , Lipossomos , Vancomicina
18.
Colloids Surf B Biointerfaces ; 207: 112043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34416442

RESUMO

Fight against antimicrobial resistance calls for innovative strategies that can target infection sites and enhance activity of antibiotics. Herein is a pH responsive multilamellar vesicles (MLVs) for targeting bacterial infection sites. The vancomycin (VCM) loaded MLVs had 62.25 ± 8.7 nm, 0.15 ± 0.01 and -5.55 ± 2.76 mV size, PDI and zeta potential, respectively at pH 7.4. The MLVs had a negative ZP at pH 7.4 that switched to a positive charge and faster release of the drug at acidic pH. The encapsulation efficiency was found to be 46.34 ± 3.88 %. In silico studies of the lipids, interaction suggested an energetically stable system. Studies to determine the minimum inhibitory concentration studies (MIC) showed the MLVs had 2-times and 8-times MIC against Staphylococcus aureus (SA) and Methicillin resistance SA respectively at physiological pH. While at pH 6.0 there was 8 times reduction in MICs for the formulation against SA and MRSA in comparison to the bare drug. Fluorescence-activated Cell Sorting (FACS) studies demonstrated that even with 8-times lower MIC, MLVs had a similar elimination ability of MRSA cells when compared to the bare drug. Fluorescence microscopy showed MLVs had the ability to clear biofilms while the bare drug could not. Mice skin infection models studies showed that the colony finding units (CFUs) of MRSA recovered from groups treated with MLVs was 4,050 and 525-fold lower than the untreated and bare VCM treated groups, respectively. This study demonstrated pH-responsive multilamellar vesicles as effective system for targeting and enhancing antibacterial agents.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia
19.
Adv Drug Deliv Rev ; 178: 113861, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242712

RESUMO

Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.


Assuntos
Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Humanos , Lipossomos/química , Testes de Sensibilidade Microbiana
20.
Int J Pharm ; 596: 120276, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486023

RESUMO

The identification of bacterial infections as a significant human-life threatening challenge is driving several research efforts toward generating new strategies to treat bacterial infections and associated resistance issues. Biomimicry is an emerging field demonstrating great potential for application in the war against bacterial infection and their associated diseases. Recently, nanotechnology combined with biomimetic concepts has been identified as an innovative strategy to combat bacterial infections. Herein, we present an up-to-date review of biomimetic antibacterial nanosystems, with a focus on the different biomimetic approaches involved in the synthesis and delivery of antibacterial nanosystems. Biomimetic synthesis and nanosystems involved in mimicking cellular structures, extracellular matrix structures and biological surfaces are critically reviewed. Their advantages achieved in biocompatibility, biodegradability, improvement of pharmacokinetics parameters and antibacterial efficiency are highlighted. Current challenges and recommendations for amplifying the potential of these systems are also identified. This review illustrates the significant impact and potential of biomimetic antibacterial nanosystems in the field of bacterial infection treatment.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Antibacterianos , Biomimética , Humanos , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA